
© Skkynet Cloud Systems, Inc.  •  All rights reserved  •  2233 Argentia Road, Suite 306  •  Mississauga, ON L5N 2X7  •  +1.905.702.7851  •  info@skkynet.com 1

Bigger challenges 

This broader range of application spaces challenges the 
MQTT protocol that was intentionally kept simple to 
ensure speed and flexibility.  Instead of each connection 
carrying data from a single device, MQTT is being called on 
to send collections of data values.  Where once all devices 
may have been identical, now a variety of devices must 

communicate with each other using different data 
formats.  The simple, direct security model of device-to-
client is not sufficient anymore when networks need to be 
isolated using DMZs, requiring multiple-hop connections.  
A new specification, Sparkplug B, was introduced to meet 
some of these challenges, and yet there are ways that it 
too, can be enhanced.

With the advent of Industrial IoT (IIoT), proponents of MQTT stepped up to offer it as a way to connect production data 
to the cloud.  And with increasing interest in connecting OT (operations technology) to IT, MQTT has been called upon 
to connect not only sensors and actuators in the field but also edge devices, SCADA systems, IoT gateways and more.  
These get linked to various tools used by corporate IT departments including historians, data lakes, AI engines, and other 
analytical instruments.

MQTT is the protocol of choice for many industrial 
communication tasks, particularly in the oil and gas sector.  
It was developed to be efficient, quick, and secure, and it 
delivers on those promises.  It does a good job at what it 
was designed for—connecting field devices to a central 
SCADA system and passing data between them.

For 
MQTT

smarter
is better

W H I T E  P A P E R



© Skkynet Cloud Systems, Inc.  •  All rights reserved  •  2233 Argentia Road, Suite 306  •  Mississauga, ON L5N 2X7  •  +1.905.702.7851  •  info@skkynet.com 2

FOR MQTT SMARTER IS BETTER | WHITE PAPER

Get smarter
These challenges demand that MQTT get smarter.  By 
design, MQTT is a transport protocol, like a postal service 
carrying letters.  The service doesn’t know or care what’s 
in the letters and takes no interest in the personal 
lives of those who send or receive them.  It just carries 
and delivers letters.  Likewise, an MQTT broker has no 
knowledge of the content of its messages, nor the status 
of sender and receiver.

Now suppose we make the MQTT broker smart.  What 
if we give it the ability to read and understand the 
messages it carries?  Like the curious postal clerk that 
reads postcards while delivering them, the MQTT broker 
could now parse them and handle messages more 
intelligently.  And what if the broker could communicate 
with the senders and receivers themselves?  It could then 

inform them of network status or which clients may have 
disconnected.  

This kind of smart broker would be invaluable for the 
growing demands being put upon MQTT.  Let’s look in 
more detail at what’s needed, and how making MQTT 
smarter can make it better.

Data collection
For many IoT and OT-to-IT applications, the simple device-
to-broker MQTT connection is not sufficient.  
On large-scale systems with hundreds or thousands of 
connected devices, the data streams may need to be 
consolidated into a few or even one MQTT connection. This 
is particularly true for cloud services that accept only one 
client connection, or that charge on a per-connection basis.

With this aggregation of data streams, different devices 
and data sources may need to be integrated.  Although 
all may use MQTT, there is a good chance that they use 
different message types.  And in many scenarios, MQTT 
is being integrated with other industrial protocols, such 
as OPC UA.  

A smart MQTT broker that provides native connectivity 
and data conversion from OPC UA is very useful for 
collecting and aggregating incoming data in this way.  
By parsing all incoming messages, it can translate 
between various MQTT message types, and provide a 
single outbound MQTT message type.  And if it can read 
data in other common protocols like OPC, it is not too 
much of a stretch to be able to convert that data into the 
same MQTT message type as well.

Data consistency
In a real-time industrial system, data consistency is 
critical.  An operator monitoring an HMI or SCADA system 
needs to know exactly what’s happening on the physical 
device.  Data that’s stale or out of correct time sequence 
can lead to incorrect decisions.  Also, any disconnects or 
network irregularities must be known.  A smart MQTT 
Broker leverages its ability to parse messages, along with 
smart message queueing, to ensure data consistency.

Smart message queueing is needed in real-time systems 
to handle message overload. This happens when a data 
producer, like a sensor or other device, sends data faster 
than a consumer can receive it.  A chronic overload 
requires the broker to drop messages. 

MQTT
Client

MQTT
Client

MQTT
Sparkplug B Client

MQTT
Client

Smart
Broker

Modbus
and others

OPC DA/UA

SB



© Skkynet Cloud Systems, Inc.  •  All rights reserved  •  2233 Argentia Road, Suite 306  •  Mississauga, ON L5N 2X7  •  +1.905.702.7851  •  info@skkynet.com 3

A smart MQTT broker can implement an intelligent 
message queue that examines the message content 
and ensures that the latest value of every data item is 
delivered, even when earlier values are dropped.  This 
keeps data at the consumer consistent with the physical 
reality of the producer.

Latest value - Having very latest value of the data is 
critical in an industrial system. Suppose, for example, in 
a burst of activity a pump is switched on and off many 
times, with the final position being “OFF”.  If that final 
MQTT message gets dropped by the broker, the HMI or 
SCADA system will show the pump as “ON.”  This kind of 
inconsistent data can lead to costly errors and system 
malfunctions.  A regular MQTT broker without smart 
message queueing may drop that final, latest value, 
whereas a broker with smart message queueing ensures 
that it gets delivered.

Time order is preserved in a single MQTT message topic, 
but not necessarily among multiple topics.  Events coming 
from different devices that occur in the order A then B 
then C could be delivered to an application as C then B 
then A, or any other ordering, which is an error in many 
industrial-control use cases.  A smart broker can preserve 
time order as it converts messages to other protocols for 
transmission to control systems or retransmission across 
a network.

Connection status - Regular MQTT brokers do not have 
a way to indicate that a data source is disconnected.  
The consuming application cannot tell the difference 
between an old value from a sensor that has failed, or 
a current value that has simply not changed recently.  
The “last will” mechanism in MQTT designed to deal with 
this requires unreasonable levels of coupling between 
the producers and consumers of data, resulting in 

duplicate configuration and increased integration and 
maintenance costs.

A smart broker that monitors the condition of the data 
producers and the network can assign a quality code 
to each message and update it with each value change.  
This information can be included in the outgoing MQTT 
message.  As a result, data consumers have some way to 
tell why a value is not changing.

Data security
Industry security experts and government agencies 
recommend isolating networks for connecting OT and 
IT systems.  The preferred approach is by using a DMZ.  
NIST document SP-800-82 sums up it up like this: “The 
most secure, manageable, and scalable control network 
and corporate network segregation architectures are 
typically based on a system with at least three zones, 
incorporating one or more DMZs.”

These three zones are the control zone (OT), the 
corporate zone (IT), and the DMZ in the middle. Using 
a DMZ ensures that there is no direct link between 
corporate networks and control networks, and that only 
known and authenticated actors can enter the system at 
all. The SP-800-82 document describes the value and use 
of firewalls to separate these zones, and to ensure that 
only the correct data passes from one to the other. 

Multi-hop daisy chain
Implementing data flow through a DMZ is problematic 
for MQTT, as this kind of connection typically requires 
two or more servers, linked together one after the other 
in a daisy chain. The QoS guarantees in MQTT cannot 
propagate through the chain, making data at the ends of 
the chain unreliable. 

FOR MQTT SMARTER IS BETTER | WHITE PAPER

Data
Sources

Control zone (OT) DMZ Corporate zone (IT)

Data
Users



© Skkynet Cloud Systems, Inc.  •  All rights reserved  •  2233 Argentia Road, Suite 306  •  Mississauga, ON L5N 2X7  •  +1.905.702.7851  •  info@skkynet.com 4

One reliable solution is to convert the MQTT message into 
a different format that can be passed over the network 
from server to server until it reaches its destination.  The 
device producing the MQTT data would be connected to 
an instance of a smart broker.  The broker, capable of 
doing data conversions, would pass the data, along with 
its quality information, via a secure protocol to a second 
instance of the smart broker, which would convert the 
data back into MQTT.

Ideally, the protocol used would offer SSL encryption, 
preferably with support for the most recent versions, 
such as TLS 1.2 and TLS 1.3, as well as use and enforce 
server certificates.  Also, the smart broker should be able 
to replicate the ability of an MQTT client to send data 
outbound from a firewall without opening any inbound 
ports.  It is critical that this valuable security feature of 
MQTT be retained.

Sparkplug B enhancements
The Sparkplug B specification for MQTT was introduced 
to resolve interoperability issues between vendors 
by defining how data is sent and received. Sparkplug 
B classifies MQTT clients as either edge of network 
(EoN) devices that produce data, or as applications 
that consume data.  Each Sparkplug B device produces 
messages of various kinds, like a BIRTH message to 
show it has come online, DATA messages for sending 
data, and a DEATH message when it goes offline.  Any 
Sparkplug B application that is online receives these 
messages and is thus kept informed of which data is 
coming from which device.

All of the smart broker capabilities discussed so far apply 
to a Sparkplug B-based system.  Additionally, a smart 
MQTT broker may provide other features to further 
enhance Sparkplug B connectivity.

Synchronizing all applications - Because it is aware of 
all connections, a smart broker can synthesize a BIRTH 
message for each connected device whenever a new 
application comes online.  This allows that application 
to receive DATA messages from all currently connected 
devices, eliminating issues related to start-up order.

Responding to errors - In addition to its ability to 
identify out-of-order or lost MQTT messages, a smart 
broker should also be able to automatically disconnect 
a Sparkplug B device when these kinds of errors occur, 
and allow it to reconnect.  This would cause the device 
to re-send its BIRTH (startup) message, which will 
resynchronize all receiving applications, thus maintaining 
a single version of the truth.

Resolving failed writes to devices - Another useful 
feature would be to check all write requests from 
applications to devices, to ensure the specified data value 
was written on the device.  If the smart broker detects 
the value on the device did not change, it would force the 
device to disconnect, causing it to retransmit its BIRTH 
message.  This would resynchronize all applications 
listening to that device, and is another way to maintain 
a single version of the truth.

Adding data quality information - For systems that 
need to convert Sparkplug B data to other protocols, a 
smart broker could add quality information.  For example, 
when converting Sparkplug B data to OPC, it could add 
OPC data quality.  BIRTH or DATA messages could be 
assigned the OPC data quality of Good, while DEATH 
(shutdown) messages might take a Not Connected quality.

Getting better
As valuable as MQTT is for device-to-server data 
communication, it can get even better—to take on the 
challenges of OT/IT, Industrie 4.0, and the Industrial IoT.  
A smart MQTT broker can collect data from multiple 
incoming message types, and even other protocols.  
It can ensure data consistency over the entire path of 
the message from data producer to data consumer, 
where the consumer always has the latest value and 
with an indicator of data quality.  A well-designed smart 
broker can also be used to securely connect MQTT data 
producers and consumers across DMZs and other multi-
hop network configurations.  These advantages and more 
can be on offer for Sparkplug B implementations as well.  
For today’s requirements and those that lie ahead, as 
MQTT gets smarter it gets better.

About Skkynet
Skkynet is a global leader in real-time middleware 
products and services that allow companies to securely 
acquire, monitor, control, visualize, network and 
consolidate live process data in-plant or in the cloud. 
DataHub®, Skkynet DataHub in Azure, and Embedded 
Toolkit (ETK) software enable secure, real-time data 
connectivity for industrial automation, Industrial IoT, and 
Industrie 4.0.  Visit skkynet.com for more.

Skkynet®, DataHub®, and the Skkynet logo are either registered 
trademarks or trademarks used under license by the Skkynet group 
of companies (“Skkynet”).  All other trademarks, service marks, trade 
names, product names and logos are the property of their respective 
owners.

FOR MQTT SMARTER IS BETTER | WHITE PAPER

https://skkynet.com

